
THE PCOR PARTNERSHIP

Because CCUS requires a new combination of existing and novel technologies, research and demonstration are needed to advance our knowledge of their potential to better manage CO₂. The PCOR Partnership is assessing and prioritizing the opportunities for CO₂ storage in the region and working to resolve the technical, regulatory, and environmental challenges to the most promising storage opportunities. At the same time, the PCOR Partnership informs policymakers and the public about CO₂ sources, storage strategies, and storage opportunities.

THE RCSP INITIATIVE PROGRAM

The Regional Carbon Sequestration Partnership (RCSP) Initiative is a key component of the U.S. Department of Energy's (DOE's) Carbon Storage Program efforts to validate geologic storage technologies and support commercialization of CCUS. Since 2003, the DOE RCSPs have been developing expertise in all aspects of CCUS through activities ranging from laboratory- and modeling-based investigations to large-scale field tests. The RCSP Program is recognized internationally for its contributions to the science and technology of subsurface characterization, design, operation, and monitoring for geologic storage.

The PCOR Partnership is one of four regional initiative projects established in 2019 from the RCSP Program. Under this DOE-supported initiative, the PCOR Partnership continues to serve its region and broad stakeholder base to advance and accelerate CCUS deployment. Each of the four partnerships is identifying and addressing knowledge gaps and technical challenges as well as disseminating knowledge to accelerate commercial CCUS deployment. Each partnership will leverage its region's strengths to identify and promote potential infrastructure and/or CCUS projects that will enable the low-CO₂-emission industries of the future.

ADVANCED STORAGE R&D

Wellbore Integrity and Mitigation

Storage Complex Efficiency and Security

Monitoring, Verification, Accounting (MVA), and Assessment

STORAGE INFRASTRUCTURE

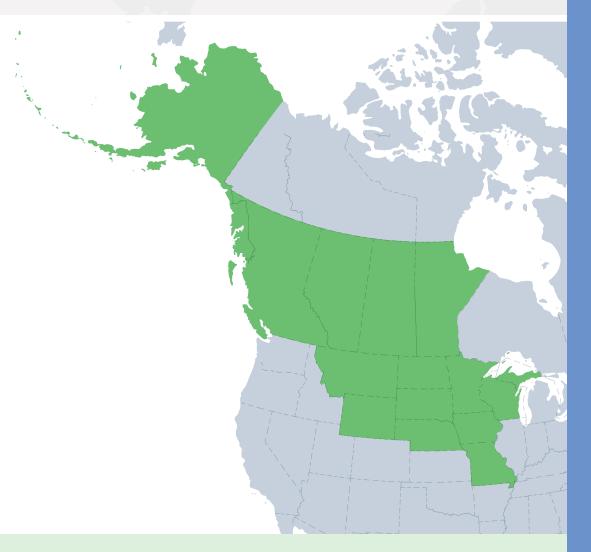
Regional Carbon Sequestration Partnership Program

Characterization Field Projects (onshore and offshore)

Fit-for-Purpose Projects

RISK AND INTEGRATION TOOLS

THE DOE CARBON STORAGE PROGRAM³⁵ comprises three technology areas: storage infrastructure; advanced storage research and development (R&D); and risk and integration tools, which cuts across and links the other two.


PCOR PARTNERSHIP INITIATIVE REGION

PCOR PARTNERSHIP

The EERC leverages the combined years of experience of the PCOR Partnership and the Partnership for CO₂ Capture (PCO₂C) to address regional capture, transport, use, and storage challenges facing commercial CCUS deployment by:

- · Strengthening the technical foundation for geologic CO₂ storage and EOR.
- Advancing capture technology.
- Improving application of monitoring technologies.
- · Promoting integration between capture, transportation, use, and storage industries.
- Providing scientific support to regulatory agencies and policymakers.

The PCOR Partnership—funded by DOE's National Energy Technology Laboratory (NETL), the North Dakota Industrial Commission (NDIC), and partner organizations—is accelerating the commercial deployment of CCUS. The EERC leads the PCOR Partnership, with support from the University of Wyoming and the University of Alaska Fairbanks.

PHASED APPROACH

CHARACTERIZATION PHASE

The DOE RCSP Program began with three phases that ran from 2003 to 2019 and laid the foundation for CCUS commercialization by validating and demonstrating the capacity for permanent, economical, and safe geologic storage of CO₂. The work during the RCSP Program helped to establish effective methods and reliable approaches to developing and deploying CCUS projects across the different RCSP regions.

PHASE I (CHARACTERIZATION)

Beginning in 2003, Phase I consisted of characterizing regional CO₂ emission sources and potential geologic storage locations within each RCSP region.

PHASE II (VALIDATION)

Beginning in 2005, validation of the most promising regional storage opportunities was addressed through a series of small-scale field projects in various carbon storage targets such as saline formations, coal seams, basalt formations, and terrestrial systems. The validation projects provided valuable information on reservoir and seal properties of formations as well as initial validation of geologic modeling and field monitoring technologies.

In 2007, Phase III focused on large-scale field projects in saline formations and oil and gas fields, with the target goal of injecting at least 1 million metric tons per project. These large-scale demonstration projects advanced CCUS project management knowledge and supported the development of storagerelated technologies in characterization, geologic modeling and simulation, risk assessment, mitigation, and monitoring.

PHASE III (DEVELOPMENT)

uring Phase I, the PCOR Partnership assessed and prioritized opportunities for storage in the region and helped address the technical, regulatory, and environmental barriers to the most promising storage opportunities. The effort resulted in practical and environmentally sound strategies for carbon management in the PCOR Partnership region, derived from assessments of CO₂ emission sources, sinks, regulations, deployment challenges, transport considerations, and capture and separation technologies.

Phase I activities identified four source–sink combinations in the Williston and Alberta sedimentary basins that merited field validation testing in Phase II.

Learnings from Phase I include the following:

- Multiple CO₂ storage targets exist within the PCOR Partnership region, including oil fields, saline formations, and coal seams.
- The presence of CO₂ sources and storage options and their relative proximity to each other support the deployment of CCUS projects within the PCOR Partnership region.

PHASE II VALIDATION

PHASE III

DEVELOPMENT

VALIDATION PHASE

The goal of Phase II was to validate technologies and to demonstrate CCUS in locations in the PCOR Partnership region that could support future full-scale geologic and terrestrial storage opportunities. From 2005 to 2009, the PCOR Partnership conducted four field validation projects that demonstrated the effectiveness of CO₂ storage in different settings and under varying conditions. The field validation tests demonstrated the CO₂ storage potential of multiple storage targets, including deep carbonate formations, lignite coals, pinnacle reef structures, and the prairie pothole wetlands.

In addition to the validation projects, several supporting activities were conducted during Phase II, including 1) refinement of regional characterization of storage opportunities, 2) clarification of the regulatory and permitting requirements for geologic CO₂ storage, 3) detailed review of commercial CO₂ capture technologies, 4) integration of regional efforts with other DOE RCSPs, and 5) continuation of local and regional public outreach initiatives.

Ph

Phase II Validation Projects

ZAMA FIELD

Determined acid gas injection for the purpose of acid gas disposal, geologic storage of CO₂, and EOR. Prior to this project, the CO₂ portion of the acid gas was vented to the atmosphere, while sulfur was separated and stockpiled in solid form on-site. This project enabled the simultaneous beneficial use of each of these materials to produce more oil and reduce GHG emissions.

LIGNITE FIELD

Investigated the ability of unminable lignite seams to store CO_2 during enhanced coalbed methane (ECBM) production. The validation test demonstrated CO_2 did not significantly move away from the injection wellbore and was contained within the coal seam, suggesting that comparable operations could be successfully implemented at other field sites.

NORTHWEST MCGREGOR FIELD

Evaluated the potential for injecting CO_2 into a deep carbonate reservoir for the dual purpose of CO_2 storage and EOR at depths greater than 2000 meters. The results indicated that CO_2 -based huff 'n' puff operations are a technically viable option for improving oil recovery in deep carbonate reservoirs, even those with relatively low primary permeability.

TERRESTRIAL FIELD

Developed the technical capacity to systematically identify and apply alternative land-use management practices to the prairie pothole ecosystem (at both local and regional scales) that result in GHG reductions and potentially salable carbon offsets. The project demonstrated that restoring previously farmed wetlands replenishes soil organic carbon lost to cultivation at the average rate of 0.4 tonnes per hectare per year.

DEVELOPMENT PHASE

In 2007, the PCOR Partnership entered Phase III, the development phase, with the goal of demonstrating large-scale CO₂ storage. The RCSP Phase III projects had a target of injecting at least 1 million metric tons of CO₂ and set out to demonstrate that the CO₂ could be injected and stored safely, permanently, and economically. Results from these efforts provided the foundation for CCUS technology commercialization.

The PCOR Partnership teamed with industrial partners to develop two commercial-scale CCUS demonstrations in the region. One of the large-scale tests focused on CO₂ storage in a saline formation, while the other investigated associated CO₂ storage resulting from EOR.

Phase III Commercial Demonstration Projects

FORT NELSON FEASIBILITY PROJECT

Investigated the feasibility of using a deep carbonate saline formation to safely and cost-effectively store CO_2 from a commercial natural gas-processing facility. The results of this project suggest that commercial-scale CCUS in the area is technically feasible and cost-effective MVA meets or exceeds the geologic storage standards of the CSA Group, Canada's standards association. The project aimed to inject approximately 2.2 million tonnes of CO_2 annually.

BELL CREEK DEMONSTRATION PROJECT

Demonstrated that commercial EOR operations can safely and cost-effectively store regionally significant amounts of CO_2 . This collaborative project with Denbury Onshore, LLC (Denbury) showed that CO_2 storage can be achieved in association with EOR and that MVA methods can be used to effectively monitor CO_2 storage during regular EOR operations. During the demonstration, over 5.4 MMt of CO_2 was injected and stored through the commercial EOR process in the Bell Creek Field, while over 16 monitoring techniques were evaluated for their effectiveness in tracking subsurface CO_2 .

AQUISTORE PROJECT

Provides storage to a commercial CO₂ capture plant and an active oil field for EOR operations. In addition to the Phase III largescale demonstration projects, the PCOR Partnership supported the Aquistore project through geologic modeling and simulation. Aquistore is injecting and storing CO₂ from SaskPower's Boundary Dam Carbon Capture Facility near Estevan, Saskatchewan.

PCOR PARTNERSHIP PARTNERS

RES'
Think Big. Go Beyond.

aramco 🚵

Biorecro

C-OUEST

EMERSON

FRONTIER

HUNTING

KCRC*

xand

PSC

STATE OF WYOMING Clean Coal Technology Fund

() TC Energy

PRODUCTS 1

ARCTECH

BKV

XCERILON

ENBRIDGE

NOTH Dakota

PTTC

SaskPower

(T)TERRACOH

Avalon

bluesource

CCX

DARKVISION

nergy

Los Alamos

Minnkota Power

NESET

NDSU

PARAGON

RAINBOW

seismos

STRATEGIC WEST ENERGY LTD.

TGS

PRAXAIR

Saskatchewar Industry and Resources

Spectra) Energy.

BLACK & VEATCH

Chevron

FGL]

Husky Energy

Lignite

MINNESOTA

Dakota | Public Service Commission

PACIFICORP

PUGET SOUND ENERGY

SCOUT

Steiner

Oil & Gas, LLC

TESORO

∏CLASS VI

DELFT INVERSION

JERCB Energy Resources Conservation Board

Manitoba Hydro

MISSOURI
DEPARTMENT OF
NATURAL RESOURCE

NSG

NORTH DAKOTA'S
BUILDING TRACES UNIONS
White or Director, there years

Peabody

RAMGEN POWER SYSTEMS

EKONG UNVIKUI

STRESS ENGINEERING SERVICES INC.

The CETER Group, Inc.

WHITE ROCK OIL & GAS

SOLUTIONS

TransAlta

AM'S

Oil&Gas

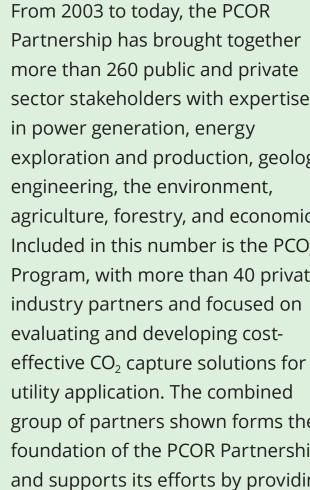
MARUBENI ITOCHU STEEL

DNRC

Ameren

CarbonAlpha

CO₂SeQure



MEPUSA

NEXTSTREAM

NorthWestern Energy

NBURNS M⊆DONNELL

CMG

devon

HALLIBURTON

MIN W

Nuverra

ptrc

RIT

SILIXA

SULZER

TRI-STATE G&T

Woodside

SIMTECH

TUNDRA OIL & GAS

WTO SHIP OF THE PROPERTY OF TH

AMERICAN COALITION FOR CLEAN COAL ELECTRICITY

BASIN ELECTRIC POWER COOPERATIVE

CO₂ SOLUTIONS

Eagle Operating Inc.

ES ZPLORE

Heidelberg Materials

MEG ENERGY

MONTANA-DAKOTA

UTILITIES CO.

J Distance of MEDIT Resources Group. No.

Dakota | Evironmental Quality

OPPU

ppl

Rockall

\$

MERICAN

BCOIL & Gas COMMISSION

CURÉ CARRON UTELIZATION RESEARCH COUNCIL

ConocoPhillips

EXCELSION ENGY

HESS

W Jackson Walker

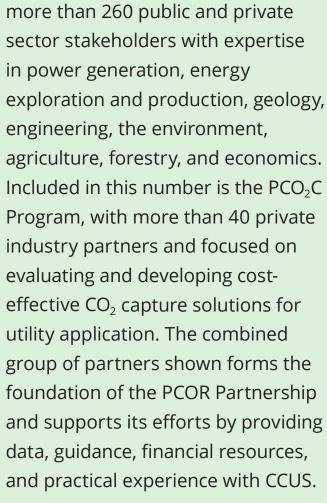
Melzer Consulting

M T R
MEMBRANE

ALA

ONEOK

tNavigator


SOUTH DAKDTA personners of components, a worse, espongs more and appropriate transport.

TALEN ...

■USGS

WYOMING MINING ASSOCIATION

ATLAS 2024

53

52 PCQR